Hall	Tic	ket N	lumb	er:					
								Code No.: 11121 AC)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. I-Semester Backlog Examinations, Jan./Feb.-2024

CALCULUS

(Common for all)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Write the necessary condition for convergence of a series.	2	1	1	1,12
2.	Define Alternating Series.	2	1	1	1,12
3.	Define Evolute of a curve.	2	1	2	1,12
4.	Find the radius of curvature at (0,0) of the curve $2x^4 + 2y^4 + 4x^2y + xy - y^2 + 2x = 0$.	2	2	2	1,12
5.	Define total derivative.	2	1	3	1,12
6.	Write the coefficient of x^2 for the expansion of $e^x \sin y$ at (0,0).	2	2	3	1,12
7.	Write the physical interpretation of gradient.	2	1	4	1,12
8.	Find a unit normal vector to the given surface $x^2y + 2xz = 4$ at the point $(2, -2, 3)$.	2	2	4	1,12
9.	If u and v are functions of x , y then define jacobian.	2	1	5	1,12
10.	Evaluate $\int_0^2 \int_0^3 xy \ dx \ dy$.	2	2	5	1,12
	Part-B ($5 \times 8 = 40 \text{ Marks}$)				
11. a)	Test for convergence of the series $\frac{1}{4.7.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \cdots$	4	2	1	1,12
b)	Show that the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$ is Conditionally Convergent.	4	3	1	1,12
12. a)	Obtain the Taylor's series expansion of the function $f(x) = \sin x$ in powers of $\left(x - \frac{\pi}{2}\right)$.	4	3	2	1,12
b)	Find the evolute of the parabola $y^2 = 4ax$ at any point $P(x, y)$.	4	3	2	1,12
13. a)	If $u = f(y - z, z - x, x - y)$ prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	4	2	3	1,12
b)	Using Lagrange's method of undetermined multipliers find the minimum value of	4	3	3	1,12
	$x^2 + y^2 + z^2$, given that $xyz = a^3$.				

direction of $2i - j - 2k$. b) Show that the vector $(x^2 - yz)\bar{\imath} + (y^2 - zx)\bar{\jmath} + (z^2 - xy)\bar{k}$ is irrotational and find its scalar potential. 15. a) Evaluate by Green's theorem $\int_{c} (y - \sin x) dx + \cos x dy$, where C is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}, \pi y = 2x$. b) By Changing the order of integration, evaluate $\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$. 16. a) Test for convergence of the series $1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \cdots (x > 0)$. b) Find the radius of curvature at any point on the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 17. Answer any <i>two</i> of the following: a) Using implicit differentiation, find $\frac{dy}{dx}$ when $\cot^{-1}\left(\frac{x}{y}\right) + y^3 + 1 = 4$ 3 3 1, 1, 0, $x > 0, y > 0$. b) Find $div \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal. 4 3 4 1, 1, 1, 2, 3 4 1, 3 5 1,						
 irrotational and find its scalar potential. Evaluate by Green's theorem ∫_c (y - sin x)dx + cos x dy, where C is the triangle enclosed by the lines y = 0, x = π/2, πy = 2x. By Changing the order of integration, evaluate ∫₀^{4a} ∫_{x²/4a}^{2√ax} dy dx. Test for convergence of the series 1 + x/2² + x²/3² + x²/4² + ··· (x > 0). Find the radius of curvature at any point on the curve x²/a² + y²/b² = 1. Answer any two of the following: Using implicit differentiation, find dy/dx when cot⁻¹(x/y) + y³ + 1 = 4 3 3 1. Using implicit differentiation, find dy/dx when cot⁻¹(x/y) + y³ + 1 = 4 3 3 1. Find div f where f = rⁿr̄. Find n if it is Solenoidal. 4 3 4 1. 	14. a		4	2	4	1,12
the triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$, $\pi y = 2x$. b) By Changing the order of integration, evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$. 16. a) Test for convergence of the series $1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \cdots (x > 0)$. b) Find the radius of curvature at any point on the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 17. Answer any <i>two</i> of the following: a) Using implicit differentiation, find $\frac{dy}{dx}$ when $\cot^{-1}\left(\frac{x}{y}\right) + y^3 + 1 = 4$ 3 3 1,1 0, $x > 0$, $y > 0$. b) Find $div \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal.	b		4	3	4	1,12
16. a) Test for convergence of the series $1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \cdots (x > 0)$. b) Find the radius of curvature at any point on the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 17. Answer any <i>two</i> of the following: a) Using implicit differentiation, find $\frac{dy}{dx}$ when $\cot^{-1}\left(\frac{x}{y}\right) + y^3 + 1 = \begin{bmatrix} 4 & 3 & 3 & 1 \end{bmatrix}$, $0, x > 0, y > 0$. b) Find $\operatorname{div} \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal.	15. a	j_c	4	3	5	1,12
Find the radius of curvature at any point on the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Answer any <i>two</i> of the following: a) Using implicit differentiation, find $\frac{dy}{dx}$ when $\cot^{-1}\left(\frac{x}{y}\right) + y^3 + 1 = 4$ 3 3 1,1 0, $x > 0, y > 0$. b) Find $\operatorname{div} \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal.	b	By Changing the order of integration, evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$.	4	3	5	1,12
 17. Answer any two of the following: a) Using implicit differentiation, find dy/dx when cot⁻¹(x/y) + y³ + 1 = 4 3 3 1,1 0, x > 0, y > 0. b) Find div \(\bar{f}\) where \(\bar{f} = r^n \bar{r}\). Find n if it is Solenoidal. 4 3 4 1,1 	16. a	Test for convergence of the series $1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \cdots (x > 0)$.	4	2	1	1,12
Using implicit differentiation, find $\frac{dy}{dx}$ when $\cot^{-1}\left(\frac{x}{y}\right) + y^3 + 1 = \begin{vmatrix} 4 & 3 & 3 & 1 \\ 0, x > 0, y > 0 \end{vmatrix}$. b) Find $\operatorname{div} \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal.	b	Find the radius of curvature at any point on the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	4	3.	2	1,12
$0, x > 0, y > 0.$ b) Find $\operatorname{div} \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal. $4 3 4 1, 1$	17.	Answer any <i>two</i> of the following:	e fa e			
b) Find $\operatorname{div} \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal. $\begin{bmatrix} 4 & 3 & 4 & 1 \end{bmatrix}$	a	Using implicit differentiation, find $\frac{dy}{dx}$ when $\cot^{-1}\left(\frac{x}{y}\right) + y^3 + 1 = 1$	4	3	3	1,12
The first of the f	941 20 196 197	437	en iza			100
Change into polar co-ordinates and evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$.	b	Find $\operatorname{div} \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find n if it is Solenoidal.	4	3	4	1,12
	c	Change into polar co-ordinates and evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$.	4	4	5	1,12

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	15%
ii)	Blooms Taxonomy Level – 2	30%
iii)	Blooms Taxonomy Level – 3 & 4	55%
